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Abstract

In this paper we report the result of a Monte Carlo study on the probability of chaos in
large dynamical systems. We use neural networks as the basis functions for the system
dynamics and choose parameter values for the networks randomly. Our results show that
as the dimension of the system and the complexity of the network increase, the probabil-
ity of chaotic dynamics increases to 100%. Since neural networks are dense in the set of
dynamical systems, our conclusion is that most large systems are chaotic. ( 1999
Elsevier Science B.V. All rights reserved.
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1. Introduction

In Brock (1993) there is an argument that the larger the dimension of
a non-linear dynamical system, the larger the probability that the system
dynamics have a positive Lyapunov exponent. (Clearly this argument can only
hold in a probabilistically generic sense.) From this the conclusion is drawn that
`2 it is not absurd to expect that the chances are high for obtaining a positive
Lyapunov exponent for a dynamical system on R n &drawn at random'2a when
the dimension, n, is large. In this paper we use Monte Carlo methods to
investigate to what extent this is true.
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1By complexity of a dynamical system we are referring to the dimension of the system and the
degree of the polynomial used to describe the dynamics of the system.

2For the purpose of this numerical study, we have chosen the de"nition of chaos to be that the
largest Lyapunov exponent of the system is positive.

We use neural networks to represent dynamical systems. Sprott (1993) used
polynomial functions to represent dynamical systems and found that as the
complexity1 of the system increased, the fraction of the bounded systems that
are chaotic increased for continuous systems (ordinary di!erential equations)
and decreased for discrete systems (maps). An advantage of using neural net-
works is that the dynamical system is always bounded. Since we are not testing
speci"c dynamical systems, it is important to choose a class of representative
functions that are dense in the space of all dynamical systems. Neural networks
(like polynomials) are indeed dense in the set of continuous functions on
a bounded interval. These are the only properties of neural nets that we use, and
any other class of representative functions with these properties could also be
used for this type of analysis. One issue that we do not pursue in this paper is the
question of the robustness of our "ndings with respect to the speci"cation (i.e.,
polynomials, neural networks, etc.) of the set of test functions.

In this paper we report results on discrete time dynamical systems with
time-delay coordinates. There is an argument by Takens (1981) that shows that
these maps are generic in the space of dynamical systems. We will make this
notion more precise in Section 3.

2. Chaotic dynamics

In this paper we report the result of a Monte Carlo study of the likelihood
that dynamical systems exhibit chaotic solutions.2 We carried out this investiga-
tion using single layer, feedforward neural networks. Since a neural network is
parametrically de"ned, it is a simple matter to generate the parameters at
random and to count the occurrences of chaos. There are three scaling variables
that we used: the number of neurons in the single hidden layer, the dimension-
ality of the system, and the spread in the distribution of the randomly chosen
weight parameters. Our "ndings are that as the dimension of the system
increases, the probability of chaos approaches 1.

Hornik et al. (1989), Hornik et al. (1990) showed that any continuous function
can be uniformly approximated (on compact sets) by a neural network. Thus,
they can be used as proxies for the equations that describe the dynamics of
a system. Since our results show that the more complex the system, the greater
the probability of chaos, we surmise that the probability of chaotic dynamics
increases as the complexity of the system increases.
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3This was the approach of Doyon et al. (1993) and the references cited therein.

3. Feedforward networks

The single-layer feedforward networks that we use in this paper are
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the weights. The function / is called an activation unit or a neuron, n is the
number of neurons and d is the dimension of the system. The function /, also
called a squashing function, is typically taken to be the logistic function
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From a theoretical point of view, these two representations are equivalent since
a simple relationship exists between them:

tanh(u)"2/(2u)!1.

We will denote the class of neural networks (functions of the form in Eq. (1) as
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For our purposes we shall assume that there is enough smoothness present so
that the system dynamics are representable by an element of C2(M,M), the set of
twice continuously di!erentiable functions from a compact manifold, M, of
dimension m into itself. These dynamical systems are of the form
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where F :MPM and x
t
3M. One way to form a parametric class of functions

that approximates these systems is to use a neural network for each of the
component functions of the system.3 For computational reasons we chose
a di!erent approach and used a single neural network to generate a &time series'
of scalar data. A single network, f3R

n,d
, de"nes a dynamical system on R d by
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4Each of the authors independently wrote a program to calculate the largest Lyapunov exponent
for the neural network system. The programs and data are available at the World Wide Web site:
http://sprott.physics.wisc.edu/neural/.

5The pseudo random numbers were generated by the algorithm of l'ED cuyer (1988) as programmed
in Press et al. (1992).

where y
t
3R. There is a connection between the two types of representations of

dynamical systems in Eqs. (2) and (3). Systems described by Eq. (3) are easily
written in the form of Eq. (2) via the mapping of R d to itself:
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Thus they form a subset of the d-dimensional dynamical systems. How about
those systems that are not of the form Eq. (3)? In Takens (1981) is shown that
systems of the form (2) which are di!eomorphisms embed (generically) in R d for
some d42m#1. Thus, there is an open and dense set of dynamical systems,
each element of which is topologically conjugate to a system of the form (3).
These latter systems can be uniformly approximated (on compacta) by neural
networks.

4. Numerical results

In this section we present some of the numerical results from a Monte Carlo
study on the probability of chaos in dynamical systems.4 For the system
dynamics we used Eq. (1) with the hyperbolic tangent function:
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where the matrix of weights, w, and the vector of coe$cients, b, were generated
by a pseudo-random number generator.5 The elements of w are iid normal with
mean zero and unit variance. There is a scaling parameter, s, which can also be
interpreted as the standard deviation of the weights. The elements of b are
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where the Mu
i
N are iid uniform on [0, 1]. Note that the coe$cients are scaled so

that +n
i/1

b
i
"1. With this scaling, f : [!1, 1]dP[!1, 1]. This scaling is com-

pletely general. If without the scaling +n
i/1

b
i
"r, then f : [!r, r]dP[!r, r]. By

scaling the inputs y by 1/r, the weights w by r and the vector b by 1/r, the
function now maps [!1, 1]d to [!1, 1], and the resulting scaled dynamics are
identical, up to the scaling factor. The Lyapunov exponents of the scaled system
are the same as those of the unscaled system.
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Fig. 1. Contour plot for n"8 with increasing d and s showing that the probability of chaos
approaches unity as d becomes large.

The largest Lyapunov exponent was calculated numerically by randomly
selecting an initial point (y
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Fig. 2. Contour plot for s"8 with increasing n and d showing that the probability of chaos
approaches unity as d becomes large.

was advanced one time period along with (y
1
,2, y

d
). This process is then

repeated, and the largest Lyapunov exponent was estimated by the average of
the logs of the scalings:
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where t is the number of iterations of the map.
Figs. 1 and 2 show the percentage of chaotic systems (positive Lyapunov

exponent) for a collection of approximately 8 500 000 single-layer feedforward
neural networks. In Fig. 1 the number of neurons is constant at n"8, and in
Fig. 2 the spread is constant at s"8. Note that as the dimension increases, the
probability of chaos increases to 1. Second, note the &C' shape of the contour
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6See Doyon et al. (1993) for a discussion of the route to chaos as the scaling parameter, s,
increases.

lines. The shape in "gure one can be explained in terms of the activation
function,
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For a given value of the dimension parameter, d, the tanh function will be nearly
linear for small values of the spread, s, and will be constant at $1 for large
values of the spread. Linear systems cannot exhibit chaotic behavior, and when
the activation functions are all $1, the number of states is "nite and the output
is periodic, which also cannot be chaotic.6

In Fig. 3a}d the distribution of the largest Lyapunov exponent is given for
four combinations of number of neurons, n, and dimension, d, with the spread
held constant at s"8. Approximately 600 000 networks were used to construct
these distributions. In Fig. 3c and d (d"64) it can be seen that the de"nition of
chaos of j'0 is not sensitive to the threshold value of j"0. The "gures also
show that as the dimension increases and as the number of neurons increases,
the distribution function of the largest Lyapunov exponent shifts to the right,
eventually ending up entirely, but barely, to the right of the origin.

A prominent feature, most evident at low dimension, is the sharp spike at
j"0, corresponding to quasi periodic orbits. The area under this spike is
relatively small, suggesting that such orbits are a small fraction of the total. The
fraction is less than the 30}40% found by Sprott (1993) for polynomial maps,
but similar to the 5}10% found for low-dimensional polynomial #ows.

5. Conclusion

The fact that our arti"cial neural networks tend to be chaotic with a probabil-
ity approaching unity as their complexity increases is interesting, but perhaps
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Fig. 3. Distributions of largest Lyapunov exponents for various n and d with s"8.

7For more detailed discussion of the e!ect of dimension see Albers et al. (1996).

not surprising. Less obvious is the observation that the largest Lyapunov
exponent, though positive, approaches zero in the limit of increasing complexity.
That is to say, our networks tend to be chaotic but only weakly so. They lie at
the transition between ordered and chaotic behavior, sometimes called &the edge
of chaos'. It has been conjectured that complex emergent systems (biological and
otherwise) evolve toward such a phase transition (Langton et al., 1992).

Our results can be interpreted to suggest that evolution is not essential, but
that such behavior is inherent in the system itself as its complexity increases. Our
networks automatically exhibit both unpredictability (sensitivity to initial con-
ditions) and long-term memory (small Lyapunov exponents), which are charac-
teristics of complex systems not only in economics but in many other "elds.
However, it may also be that as the dimension increases, the networks average
over more past values of the variable, and thus the time scale for the dynamics is
increased, resulting in smaller values of the Lyapunov exponent.7 Each point in
the time series is a weighted average of the previous d points. Thus the time scale
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8The known cases involve an unrealistically low discount factor. However, work by Sorger (1992)
shows that the size of the discount factor can be considerably larger than the ones in the known
examples.

for the dynamics ought to become longer as d increases. The change in various
dynamical quantities per iteration, including the rate of separation of nearby
orbits, should therefore decrease. This expectation was tested by calculating the
sum of the Lyapunov exponents given by the time average of

lnK
Lf

Ly
1
K .

Although this sum was strongly negative, implying rapid contraction of the
phase-space volume, the average Lyapunov exponent, obtained by dividing
the sum by d, approached zero with increasing d in about the same way as did
the largest Lyapunov exponent.

In terms of economic dynamics, the work of Boldrin and Montrucchio (1986)
in the in"nite horizon growth model and Carrera and Moran (1993) in the
overlapping generations model shows that any dynamical system is the equilib-
rium of some economy.8 Large economies characterized by non-linear dynamics
are thus likely to have chaotic dynamics.
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